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Abstract
We use elementary time-dependent perturbation theory, referred wholly to an
inertial (laboratory) frame, to determine the probability that a semi-realistically
modelled atom is promoted from the ground to an excited state, with the
emission of a photon, when its nucleus is constrained to follow a classically
prescribed trajectory including a finite interval of (arbitrary) acceleration
between asymptotically uniform initial and final motions. In the formal limit
where the proper acceleration α is constant and lasts forever, we verify the
Unruh effect, namely that the atom then behaves as if it had been exposed to
black-body radiation at temperature TU = h̄α/2πckB . The point is that in virtue
of its simplicity our formalism is reasonably adaptable, and its predictions free
of objections like those often and rightly based on the unrealizable nature of
strictly constant α considered directly rather than as a limit.

PACS numbers: 04.62.+v, 32.80.−t, 81.16.Ta

1. Introduction

It is often asserted that ‘an accelerated observer perceives the vacuum as a thermal bath of
photons’. Consider an atom moving through the vacuum (i.e. through the ground state of the
quantized Maxwell field) at constant proper acceleration of magnitude α, for all τ ranging from
−∞ to +∞ (τ denotes the proper time). A more precise version is that in its instantaneous
rest frame the atom will experience the vacuum as if the atom were at rest, and interacting
with a heat bath at temperature TU given by

kBTU = αh̄/2πc, (1)

the subscript U standing for ‘Unruh’ (Davies 1975, Unruh 1976). Early papers on the subject
and reviews include Unruh and Wald (1984), Takagi (1986), Brout et al (1995). The formal
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connection between constant acceleration and isometry in Lorentz space-time is made by
Haag (1993).

One consequence of the statement is that an atom accelerated in vacuum should undergo
spontaneous excitation, as if by absorbing a heat bath photon; such photons will also affect
the rates of downward transitions. However, the precise physical significance of the formally
elegant results found in the literature cited above is often somewhat obscure: witness the
current debate on the subject as traced through, say, Fulling and Unruh (2004), Narozhny
et al (2004), Scully et al (2003, 2004), Hu and Roura (2004), and Hu et al (2004). In our view,
confusion sometimes arises because (a) much of the discussion focuses on what an accelerated
observer perceives, whereas measurements are generally made in inertial frames; and because
(b) constant accelerations of infinite duration are unrealizable.

We intend to study the case of a two-particle (conventionally ‘nucleus’ and ‘electron’)
bound state following a realizable trajectory, and interacting with a scalar radiation field.
The calculation of transition probabilities will feature nothing more exotic than simple time-
dependent perturbation theory. Such a model has been presented, with the present problem in
mind, by Barton and Calogeracos (2005), referred to as BCI. We start with a field-theoretic
model of a bound state, because point-particle models acting as substitutes for an atom coupled
to a quantized field cannot be guaranteed not to oversimplify. The acceleration is formally
implemented by an explicitly time-dependent Hamiltonian constraint acting on the nucleus.
This is sketched in section 2; more detail may be found in BCI.

We restrict ourselves to asymptotically inertial linear trajectories (which are physically
realizable). We consider an atom that starts at time (or equivalently proper time) −∞ in its
ground state i, with no photons present. We are interested in the probability that later on it has
been promoted to an excited state f , with the emission of a photon having wave-vector k. Let
cf k be the corresponding transition amplitude. The transition probability is given by

Pf (τ) =
∫

d3kPf k(τ ), Pf k(τ ) = |cf k(τ )|2. (2)

In section 3 we present expression (21) for cf k(τ ) (to lowest order in the coupling
constant), in terms of the velocity B(τ ) characterizing an asymptotically inertial trajectory,
without commitment to any particular B(τ ). The general expression (21) is then evaluated for
the special case of a nucleus moving along the z axis, with its velocity B such that initially
(for −∞ < τ < −τ0) B = −B0, finally (for τ0 < τ < ∞) B = B0, and at the intermediate
acceleration stage

B = c tanh(ατ/c). (3)

It is convenient to introduce the scaled proper time x, and a crucial parameter x0:

x ≡ ατ/c, x0 ≡ ατ0/c. (4)

In the limit x0 → ∞ the trajectory becomes the strictly hyperbolic Unruh trajectory: for
brevity we shall call this the ‘Unruh scenario’. Expression (27) for the transition amplitude
features the factor L = Lif + La , where Lif given by (34) stems from the initial and final
stages, and La given by (41) and (42) from the acceleration stage.

In section 4 we determine the limiting form of the amplitudes for x0 → ∞ in terms of
Bessel functions K with pure imaginary order and real argument. We also define a transition
rate W as transition probability per unit of proper time and show that in the limit where the
duration of the acceleration goes to infinity the limiting form of the rate is as if the atom were
at rest and interacting with a reservoir of photons at temperature TU (1).
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2. A relativistic Hamiltonian for a bound state with the nucleus following a prescribed
trajectory

We start from a Hamiltonian describing a massless scalar radiation field interacting with
the nucleus considered as a spin 0 point particle having no internal degrees of freedom,
and with a Dirac electron. The nucleus follows a prescribed relativistic trajectory R(t),
with B(t) ≡ dR/dt the corresponding velocity. (The subscripts ‖,⊥ shall specify vector
components parallel and perpendicular to B(t).) Since the position coordinate of the nucleus
is externally prescribed (hence a c number in the quantum theory), the nuclear Hamiltonian is
just minus the nuclear Lagrangian (i.e. the Routhian). Thus the appropriate Hamiltonian has
the form

H = Hrad + (M + Zgφ(R))
√

1 − B2 + Helectron (5)

where Hrad is the usual massless-scalar-field Hamiltonian, and

Helectron = α · p + βm + βgφ(r)

features a mass-like coupling of the electron to the field.
We subject H to a sequence of canonical transformations aiming at a more convenient

Hamiltonian (see BCI for details):

(i) A time-dependent translation which amounts to moving to the nucleus rest-frame, so that
R = 0 for all t.

(ii) A so-called passive-source transformation, removing the nucleus–field coupling in favour
(initially) of a 4-scalar electron–nucleus potential

VB(r) = − (g2/4π)√
r2
‖/(1 − B2) + r2

⊥
. (6)

(iii) A scale transformation on the components of r and p, related to the Lorentz contraction.
(iv) A boost.
(v) A phase transformation3 whose action on the zero-order stationary states |n〉 of the atom

depends explicitly on the corresponding eigenvalue εn.

These transformations eventually yield an effective Hamiltonian and an effective state
vector,

i
∂

∂t
|〉eff = Heff|〉eff, (7)

Heff =
{

Hrad − B · Prad +
√

1 − B2
∑

n

|n〉εn〈n|
}

+ Hint + (noninertial terms) (8)

where

Hint =
√

1 − B2
∑

n

∑
q

|n〉〈n|gβ exp(−iεnqBr‖)φ(r‖
√

1 − B2, r⊥)|q〉〈q| (9)

with εnq ≡ εn − εq,

φ(x) =
∫

d3k
{
akφk(x) + a

†
kφ

∗
k(x)

}
, φk(x) ≡ 1

4π3/2k1/2
exp (ik · x) , (10)

[
ak, a

+
k′
] = δ(k − k′), (11)

3 BCI called this a gauge instead of a phase transformation.
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while Hrad and the field momentum Prad assume the form

(Hrad, Prad) =
∑

k

(k, k)a
†
kak. (12)

A few explanations are in order:

(a) Equation (8) features the (zero-order) atomic eigenvalues εn

√
1 − B2, with εn the

eigenvalues stemming from (6) for an atom at rest B = 0,

{α · p + βm + V0(r)}|n〉 = εn|n〉. (13)

Equation (13) is tackled by Greiner et al (1985). We shall consider only weak coupling,
taking

g2/4π ≈ 1/137 � 1. (14)

This entails light binding in the sense that the internal motion becomes nonrelativistic,
with the same bound-state energies and wavefunctions as for the true nonrelativistic
hydrogen atom:

εn  m − (g2/4π)2m/2n2, n = 1, 2, 3, . . . ; (15)

〈r|n〉 ≡ ψn(r) ∝ exp(−r/na), a = 1/m(g2/4π), (16)

where a is the Bohr radius.
(b) The time dependence in transformation (i) leads to the crucial term B · Prad in (8).

The noninertial terms in (8) stem from the explicit time dependence of the canonical
transformations (ii)–(v) on B(t). We do not attempt to calculate them since such an
endeavour would open a whole new field of inquiry. Observe that noninertial contributions
have never been treated in the Unruh literature. In fact their calculation requires a
dynamical model which is provided herein but is absent from most works in the subject.

(c) We focus on the perturbative calculation of excitation probabilities to leading order and
we thus drop zero-point contributions.

The square root in the eigenvalues εn

√
1 − B2 correctly takes into account time dilation

for a moving atom. Also (BCI, section 5), at constant B, the several explicit factors
√

1 − B2

conspire with the phase factor inside the matrix element to ensure, without any further (e.g.
without any multipolar) approximations, that excited states decay at the properly time-dilated
rates, i.e. with decay constants


(B) = 
(0)
√

1 − B2. (17)

In fact the conspiracy is so elaborate, and the result appears so unheralded and so late, that
one develops considerable confidence that, within its obvious limits of applicability, Heff does
indeed deliver results conformable to special relativity4. Such optimism is further encouraged
by detailed examination (not reported here) of the Lorentz-transformation properties of the
total energy and momentum operators, which because of the constraint is not immediately
obvious how to identify.

Finally, it is worth stressing the evident technical distinction between calculations needed
(i) for the spontaneous decay of excited atomic states (e.g. 2pm to 1s, say f to i, plus photon)
that are allowed even inertially (at constant B), and (ii) excitations (e.g. 1s to 2pm, say i to f ,

4 See for instance Boussiakou et al (2002), Cresser and Barnett (2003), and Horsley and Babiker (2005) for other
ways to time-dilate uniformly moving atoms coupled to the Maxwell field, starting from the standard nonrelativistic
two-body Schrödinger equation, and without introducing constraints. For an approach based on the Bethe–Salpeter
equation, see Järvinen (2005).
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plus photon) that are possible only for varying B, with the necessary energy (εf i + k) supplied
by the agency enforcing the constraint on R(t). It may be profitable to recall the point stressed
in detail in BCI. The formal constraint represents a force acting on the nucleon only. The
Coulomb field forces the electron to follow suit and the electron–photon interaction gives rise
to the type (ii) inertially forbidden transitions that interest us here.

3. Perturbation theory

3.1. Generalities

We wish to calculate the transition amplitudes cf k(t) for an atomic up transition from i = 1s

to f = 2pm (in standard spectroscopic notation), accompanied by the emission of a single
photon k into the initial vacuum. The present subsection admits arbitrary trajectories B(t).

The amplitudes will be determined by the text-book first-order time-dependent
perturbation theory, treating the curly bracket in (8) as the zero-order Hamiltonian, and Hint

of (9) as the perturbation. Without loss of generality, we measure phases from t = 0 = τ .
Then, in an obvious notation, the standard perturbative Ansatz, starting bare at t = −∞, i.e.
with cqk(−∞) = 0, reads

|ψ; t〉 = |i〉|0〉 exp

{
−iεi

∫ t

0
dt ′

√
1 − B2(t ′)

}

+
∑

q

∫
d3k|q〉|k〉 exp

{
−i

∫ t

0
dt ′[k − B(t ′)·k + εq

√
1 − B2(t ′)]

}
cqk(t),

where |0〉 is the vacuum (no-photon) state and |k〉 the state with one photon having wave-vector
k. This yields the first-order solution

cf k(∞) = −i
∫ ∞

−∞
dtF 〈f |Hint(t)|i〉 exp

{
i
∫ t

0
dt ′[εf i

√
1 − B2(t ′) + k − B(t ′) · k]

}
, (18)

where the auxiliary function F(τ), of the form F = exp(−λ |τ |), switches off the interaction
adiabatically and covariantly as |τ | → ±∞. The switching factor is needed in principle to
make sense of the outer integrals in (18) over the initial and final uniform velocity stages, but
disappears from the end-results upon taking the limit λ → 0 afterwards.

The matrix element in (18) is
g

4π3/2k1/2

√
1 − B2〈f |β exp{−i[εf iB · r + k‖r‖

√
1 − B2 + k · r⊥]}|i〉. (19)

Hence

cf k(∞) = − ig

4π3/2k1/2

∫ ∞

−∞
dtF (τ )

√
1 − B2(t)

× exp

{
i
∫ t

0
dt ′[εf i

√
1 − B2(t ′) + k − B(t ′) · k)]

}

×〈f |β exp{−i[εf iB(t)r‖ + k‖r‖
√

1 − B2(t) + k · r⊥]}|i〉, (20)

and expressed in terms of proper time τ

cf k(∞) = − ig

4π3/2k1/2

∫ ∞

−∞
dτF (τ) exp

{
i
∫ τ

0
dτ ′

[
εf i +

k − B(τ ′) · k√
1 − B2(τ ′)

]}

×〈f |β exp{−i[εf iB(τ)r‖ + k‖r‖
√

1 − B2(τ ) + k · r⊥]}|i〉. (21)
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3.2. The acceleration scenario, range of parameters and matrix elements

From here on we consider only the rectilinear trajectory of the type described just before (3).
We introduce the scaled variables

h ≡ cεf i/h̄α, κ ≡ kc2/α. (22)

(h ought not to be confused with Planck’s constant.) The atomic unit of acceleration is
(see (15) and the second of (16) for the Bohr radius)

αatomic = g2/4πa2m = (g2/4π)2c2/a  0.90 × 1025cm s−2, (23)

whereas laboratory accelerations are unlikely to exceed those of order 108 cm s−2 achievable
by the ultracentrifuge. Thus we confine our attention to

h � 1. (24)

The result (57) and a close look at the properties of the modified Bessel function featuring
in the latter also entail

κ/h ∼ O(1). (25)

The atomic matrix elements that enter (21) when i = 1s and f = 2pm,m = 0,±1
are calculated in Barton and Calogeracos (2008), hereafter referred to as BCII. The exact
expressions are complicated functions of B and thereby of τ , and using them is well beyond
the scope of the present report. They simplify considerably in the internally-nonretarded
approximation (equivalent in our case to the standard dipole approximation), but even then it
is only those for m = ±1 that reduce to constants (independent of B). We confine ourselves
to such transitions, for which the dipole approximation yields (after performing the radial and
angular integrations)

〈2p,±1| . . . |1s〉 = Mak±, M = ±i128/243, (26)

in natural units h̄ = c = 1.

3.3. The structure of the transition amplitude cf k

In the scenario and with the matrix elements just discussed, equations (21) and (2) lead to

cf k = gaM

4π3/2
· k±
k1/2

L, (27)

Pf = g2a2 |M|2
16π3

∫
d3k

k2
⊥
k

|L|2, (28)

where

L =
{∫ −τ0

−∞
+

∫ τ0

−τ0

+
∫ ∞

τ0

}
dτ exp(−iI (τ )) = Li + La + Lf (29)

requires the phases

I (τ ) ≡
∫ τ

0
dτ ′

{
εf i +

k − B(τ ′)k3√
1 − B2(τ ′)

}
. (30)

It is straightforward to evaluate I (τ ) both in the initial and final stages |τ | > τ0, and in the
acceleration stage |τ | < τ0, defined in the few lines preceding (3). Details are given in BCII.
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3.4. The amplitudes Li,f

These amplitudes are easy to evaluate, by virtue of the adiabatic switching factors F, and
because (30) shows that the phases Ii,f are linear in x. We define the polar angle ϑ of κ with
respect to B:

κ3 = κ cos ϑ, κ⊥ = κ sin ϑ. (31)

Eventually we find

Li = (i/α)

[h + κ cosh(x0) + κ3 sinh(x0)]
exp{i[hx0 + κ sinh(x0) + κ3(cosh(x0) − 1))]}, (32)

Lf = (−i/α)

[h + κ cosh(x0) − κ3 sinh(x0)]
exp{i[−hx0 − κ sinh(x0) + κ3(cosh(x0) − 1))]}. (33)

For nonzero x0 the two amplitudes combine into

Lif ≡ Li + Lf = (−2i/α) exp{iκ3(cosh x0 − 1)}
[(h + κ cosh x0)2 − κ2

3 sinh2 x0]
×{−i(h + κ cosh x0) sin(κ sinh x0 + hx0) + κ3 sinh x0 cos(κ sinh x0 + hx0)}.

(34)

As x0 → ∞, clearly Li, Lf , and therefore Lif vanish like exp(−x0). Specifically

|Lif |2 → 16 exp(−2x0)

α2κ4
⊥

{κ2 sin2[κ sinh x0 + hx0] + κ2
3 cos2[κ sinh x0 + hx0]}. (35)

3.5. The amplitude La

If we write

La = exp(−iκ3)

α
Q, (36)

it eventually follows from (30) that

Q ≡
∫ x0

−x0

dx exp{−i[hx + κ sinh x − κ3 cosh x]}. (37)

After some changes of variable and the definition (useful in what follows)

x3 ≡ log

[
κ − κ3

κ⊥

]
= log[tan(ϑ/2)] (38)

we obtain

Q = exp (ihx3)

∫ ξ2

ξ1

dξ

ξ
exp

{
−i

[
h log ξ +

κ⊥
2

(
ξ − 1

ξ

)]}
, (39)

where ξ2,1 = tan(ϑ/2) exp(±x0). After a further change of variables we obtain

Q = exp{ihx3}J (h, κ⊥), (40)

where

J ≡
∫ u2

u1

du exp{−i[hu + κ⊥ sinh(u)]}, u2 = x0 + x3, u1 = −x0 + x3. (41)

Thus the end-result reads

La = exp{i[hx3 − κ3]}J/α. (42)

7
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4. The limit x0 → ∞
4.1. The amplitude

In this regime one need consider only La , since Lif vanishes like exp(−x0) (see the remark
preceding (35)). Hence we can write

lim
x0→∞ L = lim

x0→∞ La ≡ L∞. (43)

The limit x0 → ∞ entails u2 → ∞ and u1 → −∞. In virtue of the increasingly fast
oscillation of the integrand, the integral J remains convergent, so that

J∞ ≡ lim
x0→∞ J =

∫ ∞

−∞
du exp{−i[hu + κ⊥ sinh(u)]}

= 2
∫ ∞

0
du{cos[hu] cos[κ⊥ sinh(u)] − sin[hu] sin[κ⊥ sinh(u)]}. (44)

The relations (Abramowitz and Stegun (1965), equations 9.6.22 and 9.6.24)

Kν(x) = sec(νπ/2)

∫ ∞

0
ds cos(x sinh s) cosh(νs)

= csc(νπ/2)

∫ ∞

0
ds sin(x sinh s) sinh(νs), (|Re ν| < 1, x > 0), (45)

Kν(x) =
∫ ∞

0
ds exp(−x cosh s) cosh(νs), (|arg x| < π/2) (46)

then lead to

J∞ = 2{cos(ihπ/2) + i sin(ihπ/2)}Kih(κ⊥) = 2 exp(−hπ/2])Kih(κ⊥), (47)

L∞ = 2

α
exp{i[hx3 − κ3]} exp(−πh/2)Kih(κ⊥), x3 ≡ log[tan(ϑ/2)]. (48)

According to (24) we work in the regime where h and κ⊥ are comparably large; however,
because the order is pure imaginary, one cannot rely on the relatively simple asymptotic
formulae for Bessel functions K found in the literature. Note also that K is real, and that for
transversely emitted photons (48) reduces to L∞(ϑ = π/2) = (2/α) exp(−πh/2)Kih(κ).

4.2. The transition rate

We restrict ourselves to large durations of the acceleration and accordingly use the limiting
form of L (43). We substitute in expression (28) for the transition probability and write

Pf (τ) = g2a2|M|2
16π3

∫
d3k

k2
⊥
k

|L∞(τ )|2 = g2a2|M|2α4

16π3

∫
d3κ

κ2
⊥
κ

|L∞(τ )|2. (49)

We define the transition rate

W = lim
τ→∞

1

2

dPf (τ)

dτ
= lim

x0→∞
α

2

dPf

dx0
(50)

(where the factor 1/2 stems from the fact that the duration of the acceleration is 2τ ).
Relation (18) leads to

W = g2a2|M|2α5

16π3
lim

x0→∞

∫
d3κ

κ2
⊥
κ

Re

{
L∗

∞
dL∞
dx0

}
. (51)

8
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The quantity dL∞
dx0

may be calculated via (41) and (42). Thus

W = g2a2|M|2α3

4π3
e−πh/2 lim

x0→∞

∫
d3κ

κ2
⊥
κ

Kih(κ⊥) cos[hx3 + κ⊥ cosh(x0) sinh(x3)]

× cos[hx0 + κ⊥ sinh(x0) cosh(x3)]. (52)

We split the above integration into Cartesian components, recall definition (38) of x3 and
rearrange the integrand:

W = g2a2|M|2α3

4π3
e−πh/2 lim

x0→∞

∫
dκ⊥κ3

⊥Kih(κ⊥)I (53)

I ≡ I + + I− (54)

I− =
∫ ∞

−∞

dκ3

κ
cos{h[x0 − log κ⊥ + log(κ − κ3)] + κ⊥ sinh[x0 − log κ⊥ + log(κ − κ3)]} (55)

I + = I−(κ3 → −κ3). (56)

We make successive changes of variable from κ3 to t =
√

κ2
⊥ + κ2

3 − κ3 and from t to
y = log t + x0 − log κ⊥. Then W simplifies considerably:

W = g2a2|M|2α3

2π2
e−πh

∫
dκ⊥κ3

⊥K2
ih(κ⊥). (57)

We make use of the remarkable integral (Prudnikov et al 1990)∫ ∞

0
dx x3K2

ih(x) = 1

3
|
(2 + ih)|2 = 1

3
(1 + h2)

πh

sinh(πh)
(58)

to obtain the final expression for the transition rate

W = g2

3π
a2|M|2ε3

f i

(1 + 1/h2)

e2πh − 1
. (59)

Notice the Planckian factor, with 2πh = 2πεf i/α = εf i/kBTU featuring the Unruh
temperature. The 1/h2 in the numerator of (59) is a correction to the Unruh result (see
also Marzlin and Audretsch (1998 )).

5. Conclusion

We considered a bound state consisting of a scalar nucleus plus a Dirac electron, based
on a relativistic field-theoretic model, and constrained the nucleus to move along a
prescribed asymptotically inertial trajectory which at intermediate times corresponds to
uniform acceleration. In the limit τ → ∞ (the duration of the acceleration stage tending
to infinity) our trajectory generates the Unruh scenario. We calculated the transition rate W

as defined in (50), for the atom to be found in an excited final state at proper time τ → ∞ if it
starts in its ground state. The rate indeed coincides with the Unruh result modulo a correction
term in the numerator. Comparing the present approach to more conventional ones we observe
the following:

(i) Following Unruh’s work there has been near unanimous agreement in the literature
concerning the excitation rate (59). However there has been much discussion concerning
the nature (even the existence) of the emitted radiation. Our approach is firmly based on
a laboratory frame treatment and the photon states describe actual photons labelled by the
lab momentum.
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(ii) The present model is based on a modestly realistic coupling between particles and field
rather than on artificial point couplings.

(iii) Realistic trajectories involve accelerations of finite duration and the present approach
delivers W(τ) equally easily. In fact, as will be reported in BCII moderate acceleration
durations x0 ∼ O(1) result in transition probabilities higher by some orders of magnitude
than the results quoted for x0 → ∞. This is a rather more promising prospect if one
contemplates observing such effects in the laboratory.
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